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The electron distribution function plays a key role in the quantitative study of various 
properties of electrons moving through a gas and is characterized as a solution of the 
Boltzmann transport equation. Simplification of this model results in a non-self-adjoint 
second-order elliptic partial differential equation with variable coefficients. The com- 
plexity of the coefficients precludes the use of a coordinate transformation to remove 
second-order cross-derivative terms, and the nonmodelness of the boundary value 
problem necessitates rather novel applications of various tools of numerical analysis 
for successful solution. Due to the non-self-adjointness, any consistent finite difference 
model is bound to be nonsymmetric; however, a finite difference scheme is devised 
which is “almost symmetric.” Iterative solution of the resulting difference equations is 
analyzed and an acceleration strategy for convergence is devised. Numerical results are 
included for a typical problem involving in excess of 5000 Mesh points. This problem 
was solved on the UNIVAC 1106 in less than 6 min of CPU time. 

1. INTRODUCTION 

Electron drift and diffusion in a gas under the influence of an electric field are 
conventionally described [l, 21 in terms of the distribution function f”(r, l ) where 
f”(r, l ) c1j2 de dr is proportional to the number of electrons at r in dr having 
electron energy between E and E + de. The function f” is the first term of a two- 
term spherical harmonics expansion in velocity space of the distribution function 
f(r, v), wheref(r, v) dr dv denotes the number of electrons at position r in volume dr 
and with velocity v in the range dv. These functions are discussed more fully in 
Section 2 and are defined by the Boltzmann transport equation. 

It has been usual to obtain numerical or analytic solutions off0 as a function of 
energy by ignoring all terms involving derivatives in the Boltzmann equation with 
respect to r, i.e., solutions are obtained for a spatially uniform distribution of 
electrons [3]. The derived function f” is then usually used to derive diffusion 
coefficients and drift velocities which are applied to physical situations where the 
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electron distribution is not spatially uniform [4]. Such analyses of experimental 
observations in uniform electric fields of diffusion coefficients and drift velocities 
have led to the successful derivation of electron collision cross sections, as a func- 
tion of energy, for most common gases [2, 31. 

However, as diffusion coefficients are a function off O, they are also strictly a 
function of r. even in a uniform electric field. It has been shown previously that 
the spatial gradient terms in the Boltzmann equation lead to significant physical 
effects, for example, the width of a diffusing electron pulse can differ by more than 
a factor of 2 from that given by the conventional theory [5, 61. 

In the present paper a numerical method is described to solve the Boltzmann 
equation in f 0, where the gradient terms in r are retained. In the numerical example 
presented in Section 5 we consider the physical situation of a steady stream of 
electrons drifting under the influence of a uniform electric field and being absorbed 
by a metal boundary. The distance from the boundary over which the electron 
density and velocity distribution are perturbed is large compared with the mean 
free path of electrons between collisions with gas molecules, e.g., for the example 
discussed later in Fig. 3, the effect of the absorbing electrode extends 0.5 cm from 
the electrode whereas the mean free path is 0.008 cm. Thus we still assume the 
validity of the two-term spherical harmonics expansion. However, for the large- 
density gradients which occur near an absorbing boundary, this assumption may 
not be a valid approximation, in which case the problem would need to be further 
examined by, for example, Monte Carlo methods [7]. 

The present paper is concerned largely with the numerical methods used. The 
physical significance of the results that are obtained for various cross sections will 
be discussed in a later paper. 

2. BOLTZMANN THEORY AND GOVERNING EQUATIONS 

The general electron distribution function, f (r, v, t), plays a key role in the 
quantitative study of electrons moving through a gas and is characterized as a 
solution of the Boltzmann transport equation [l, 21. The quantity f (r, v, t) dr dv 
denotes the number of electrons at position r in volume dr and with velocity v in 
the range dv, both at time t. In order to simplify the Boltzmann equation it is 
usually assumed that the distribution function f is almost spherically symmetric 
in velocity space and hence it is adequately represented by the first two terms of an 
expansion in spherical harmonics, i.e., 

f (r, v, t) = f O(r, E, t) + f Yr, E, t) cos 0, (1) 

where E is the electron energy and 13 is the angle between v and the direction of the 
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electric field. In the case of elastic collisions the fractional energy gain or loss by an 
electron upon colliding with a gas atom is small and this assumption (1) is very 
accurate [S]. 

By integrating the Boltzmann equation over (i) de and (iij cos 8 d6, two partial 
differential equations in f” and f’ are obtained from which f’ can be eliminated to 
obtain the equation 

4n 2E 112 afo -- - 
m ( ) nz at 

=~f[N~zQ(fo+kT~)+~~(eE~+~)] 
6mN Q 

87r E -- - 
+ 3m2N Q ( 

eE a*fo + a*fo 
aEa.7 a22 3 1 

which defines f O [5, Eq. (17)]. This equation can be rearranged to the form 

4P 2s 
( 1 

112 af” -- - = 
m m at V.(BVf”)+dl~+d2~ + dsf O, 

where 

nz is the electron mass, 
E is the electron kinetic energy, 

0 is the gradient operator [(a/&)(a/az)]‘, 
B is a 2 x 2 matrix, 

8m 
‘= 3m*NQ [ 

e2E2 + (6mN2rQkT/M) eE 
eE 1 I 

z is the distance along a given direction of propagation, 
n(z) is the total number density NaP (293/T), 
P, T are the pressure and temperature of the gas, 
Q(e) is the momentum transfer cross section, 

e is the electron charge, 

(2) 

(3) 

(4) 

(5) 
E(z) is the magnitude of the electric field E = Ek, k a unit vector along the 

z-axis, 
M is the atomic mass of the gas, 
k is the Boltzmann constant. 

d2 = - 
fh a 1 
GqazN’ 

d3=+. 
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It is of value to examine the relative magnitudes of the above quantities, i.e., 
m - 1O-27 N - 1017. M - 1O-z4 e - lo-is, P - 1 , E - 1, Q - lo-15, and 
k- lo-16.‘Hence the matrix of coefficients 

1033 1 1052 ’ (8) 

4 - 105V, etc. We found it computationally convenient to scale the independent 
variable, energy, by 

E = c/(107e), e-9 

so that E is now in electron volts, and to multiply Eq. (2) by m2. The equation for 
steady state then becomes 

where 
877~ E’ + (6mN%Q2kT/M107e) 

A = 3NQ -3 
E 

E 1 1 ’ 

c = 16N~zx~~Q 8me 8 E 
1 

M -3Q-zN' 

87~~ 8 1 
c2=3ez7p 

ac1 
c3==. 

Note that the problem has been somewhat equilibrated and 

A - E 10-l + 1O-3 E T 
l 

10-l 
10-l . 1 10-l . 

(12) 

(13) 

(15) 

We assume that the domain of definition of the partial differential equation (10) 
is 92 E [0, 21 x [0, F] and that e/Q is bounded in 92. The cross section Q(e) > 0 
and hence Eq. (10) is elliptic for T > 0 (and parabolic for T = 0) on the interior 
of 52 since 

det A = 16rrNmkr2QT/M107e. 

Unfortunately, Eq. (10) is non-self-adjoint [9, p. 1671, a property which tends to 
foster nonsymmetric finite difference models. In addition, the non-self-adjointness 
of (10) precludes the use of Ritz or finite element techniques due to the absence of 
a variational principle. Even though (10) is essentially self-adjoint [lo, p. 1031, the 
transformations involved to simplify the equation are quite complex and unwieldly, 
so too are the standard transformations for removal of the cross-derivative terms 
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a*f /& Lk [11, p. 461. We conclude that (10) is a nonmodel partial differential 
equation, the numerical solution of which requires somewhat novel applications 
of various tools of numerical analysis, 

The boundary conditions imposed are 

where 
P(e) = (6mN”/ME*)[Q(E)]*E. 

The boundary conditidn at z = 0 is simply the value off O obtained from assuming 
all gradient terms in z are zero, appropriate to a position in the electron stream 
far from the absorbing boundary. The boundary condition at e = 0 is obtained from 
(2) by requiring that 3f O/at be finite at E = 0, it being assumed that Q(0) is always 
finite and greater than zero. 

In the next section, a finite difference model of (10) and (16) is described. Once 
the electron distribution function f O is approximated, the electron current density 
and electron density can be expressed in terms off O as, respectively [5], 

’ 

n(r, t) = $ (G)“” jot &zf” dc. 
(17) 

3. FINITE DIFFERENCE MODEL 

The non-self-adjoint nature of (10) fosters a nonsymmetric system of finite 
difference equations of the form 

m = E, (18) 

where we choose a view a as a perturbation of a symmetric matrix O& . That is, 
02 = G& + GY2 , G!JIT = G& , and a2 is “small” in norm. 

Consider the finite difference mesh r as indicated in Fig. 1. Each equation in (18) 
represents an approximation to (10) at a mesh point of 7r. In the light of the 
boundary conditions (16) we deduce that the dimension of L?! is d x d, where 
d = (AU - 2)(NE - 1) and for our experiments 750 < d < 7500. 
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FIG. 1. Rectangular mesh T of gauge H = max(DE, LIZ). 

As indicated in Fig. 1, a point of the grid and its eight closest neighbors are 
referred to generically according to compass designations (cf. Forsythe and Wasow 
[9, p. ISS]). The coefficients &(E, z) are evaluated at centroids of mesh cells ---- 
designated, respectively, NW. NE, SW, SE so as to preserve symmetry of the 
second-order operator (V * AV) and hence to reduce storage requirements and 
hopefully to enhance convergence of iterative schemes. 

The following result does not seem to be readily available in the literature and 
is included for completeness. 

If U is suflciently dferentiable, 

(W/k)(P) = (4DE)-‘[U(NE) + U(SE) - U(N W) - U(SW)] + 0(H2), (19) 
(XJ/az)(P) = (4DZ)-l[U(NE) - U(SE) + U(NW) - U(SW)] + O(H2) (20) 

as H = max(DE, DZ) --f 0. The verification of (19) and (20) follows from standard 
Taylor series arguments. Note that in the case of (19) [(20)] the term involving 
U,,, [U,,,] also drops out on the right-hand side, which avoids ratios of the type 
DZ/DE [DE/DZ]. 

To discretize the differential operator in (10) at the generic mesh point P, we first -- -- 
apply (19) and (20) with (S W, SE, P, NW, NE) replaced by (SW, SE, P, NW, NE)) 
as follows. 

SfO $ [A,, g + -412 x] e= (4 DE)-l [A,,(NE) - $ (i@) + A&i%) g(m) 

+ A,,(~) g (SE) + A&i%) g (a) 

- A,,(NW)g(NW) - A,,(NW)g(NW) 

- A,,(m)dg (SW) - A1P(3wj g&q (21) 
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and a similar expression approximating (a/az)[&(aj”/&) + Aza(8fo/az)]. These 
approximations in turn necessitate approximating ajo/& and aj”/az at the centroids _-- - 
NE, SE, NW, and SW, and again the finite difference approximation in (19) and (20) 
are applied with (SW, SE, P, NW, NE) being replaced by, for example, (P, E, 
FE, N, NE). 

The coefficients cl(P) and c2(P) are approximated by an arithmetic average of 
the values of c1 and c2 (resp.) at the four neighboring centroids. Hence, the functions 
N, (2, and E need only be specified at centroids. The linear terms afO/h(P), 
afO/az(P), etc., are also approximated using (19) and (20). 

Following the above discretization procedure, the differential equation (10) is 
approximated at each mesh point P by the finite difference equation 

L(FO) = c A@‘, Q) F”(Q) = 0, 
0 

where at most nine couplings A(P, Q) are nonzero. These couplings are tabulated 
in the Appendix. 

So far we have not established an ordering of the mesh points in 7. Let Pij: 
(ci , zj), flj = Fo(P<j) and partition the unknown vector F = (F, , F, ,..., FNz.#, 
where Fj = <fl,j+I, f’$+, ,..., F~M,~+~ )’ 1 < j f NZ - 2. The unknows are , 
in this way ordered from left to right, a row at a time, and from the bottom row 
to the top row. 

ol, is taken to be the matrix containing only those components of the couplings 
A(P, Q) designated by EX and EZ in the formulas given in the Appendix. That is, 
@12 is the discretization of the linear terms c,@j”/&) and c,(aj”/az) while aC, = 
@ - 157~ is the discretization of V - AVf O + cQ f O. 

We remark that OZl is symmetric by design. For example, 

[@II,, = A@‘,, , E) = AU’,, , W) = [Glm . 

The evaluation of the energy- and space-dependent coefficients of the partial 
differential equation at the centroids of mesh cells is crucial for this symmetry to 
manifest itself. 

4. ITERATIVE SCHEME 

Various iterative schemes (block Jacobi, block Gauss-Seidel, block SOR, etc. [9]) 
were implemented in an attempt to solve the finite difference model (22) efficiently. 
Not all the attempts were successful since the matrix GZ fails to conform to the 
characteristics of matrices typical of more model boundary value problems. The 
iteration matrices considered apparently are not monotone (and hence not of 

5SIh9/3-5 
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positive type [9, p. 181]), a property often very useful in establishing convergence 
behavior of the iterative scheme as well as theoretical convergence of the finite 
difference model [12, 31. This was observed by numerical experimentation on 
several test problems. The “nonmodelness” of the linear system (18) or (22) stems 
from two sources: (i) the presence of the cross-derivative term 2”f/& Pz, whose 
discretization yields difference equations which are not of positive type, and (ii) 
the asymmetry induced by the first-order terms af O/A and af O/h. 

The analysis of any iterative scheme applied to (22) is also compounded by the 
presence of variable coefficients in the partial differential equation which vary from 
problem to problem and which may be singular (e.g., for Q(E) cc c4i3 at E = 0). 

The matrix 0 is block tridiagonal, (and hence consistently ordered 2 cyclic 
[13, p. 1021) and the block Gauss-Seidel iterates will converge asymptotically twice 
as fast as the block Jacobi iterates [13, p. 1081, assuming either converges. 

We next describe the block Gauss-Seidel iterative scheme which has worked well 
for those problems considered to date. The linear system (18) is partitioned (to be 
consistent with the partitioning of F given in the previolls section) as 

where Fj contains the unknowns F&+, in the row of mesh points along z = Zj+l 
(ordered left to right). Define 

C?? = Block-diag{6&, , GQ,, ,..., GYNz~,,,-,} (24) 

and 

9?=9-W=I+L+R, (25) 

where L is strictly lower triangular and R is strictly upper triangular. Then system 
(23) is equivalent to 

where we have used the fact that 

6& = Tridiag{A(P, W), A(P, P), A(P, E)} 

is strictly diagonally dominant from the appendix and hence nonsingular. 
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The point Gauss-&z&l iteration scheme for (26), or equivalently the block 
Gauss-Seidef scheme for (23), is given by 

j%+l' = -(I+ R)-lLj?'k' + (I+ R)-lx (27) 

(k = 0, l,...). The roles of R and L can of course be interchanged in (27) to obtain a 
variation on (27). J = -(I + R)-lL is termed the Gaus-Seidel iteration matrix, 
and it is known [l 1, p. 801 that under the assumption that L% (or equivalently CZ) is 
symmetric, (27) converges to F as k - co if and only if L% (or a) is positive definite. 
But unfortunately, our CX is not symmetric. 

However, as indicated in Section 3, 0? is “close to” the symmetric matrix cll, 
(equivalently, 9 is “close to” LF@J and by continuity we expect the iteration 
matrices associated with GY and OZ1 to behave in a similar fashion. Stein [14] has 
established conditions for convergence in such nonsymmetric cases. Suffice it to 
say that in our case 0! ---f OL1 as H - 0 and, assuming 11 a-l Ilrn is bounded as 
H -+ 0, the conditions given in [9] are very reasonable. 

The implementation of (27) is accomplished by solving for P+l) a row at a time 
via 

aNZ-l,NZ--lF~ = -@NZ--I,NZ--2F(k) + RN,, , 
(28) 

@..@+l) = -@jjjj-lp) - f-gjj+p+l’ + Rj ) 3) 3 j = NZ - 2, NZ - 3 ,..., 1, 

where the tridiagonal systems in (28) are solved using the factorization technique 
given, for example, in [13, p. 1951. 

Acceleration of convergence for the sequence in (27) was desirable since, as 
indicated in the next section, for some problems considered, a large number of 
iterations were required to achieve the desired accuracy. Successive over relaxation 
(SOR) was considered, and we sought a parameter w such that the iterates 

F(k+l) = (1 _ ,)F'k' + ,&.+I) (k = 0, l,...) 

converged in some sense faster than the sequence in (27). In (29), Fikfl) is the 
Gauss-Seidel iterate from (28) based on P) and components of Fk+l) as they are 
computed. The value of o = 1 in (29) yields the Gauss-Seidel scheme identically. 

In light of [13, Theorem 4.41 a reasonable choice of the acceleration parameter is 

w = 2/[1 + (1 - p)“2], (30) 

where p is the spectral radius of the Gauss-Seidel matrix J. The power method 
[ 13, p. 29 1 ] was used to estimate p and we discovered that an apparent manifestation 
of the asymmetry of J is the absence of an eigenvalue equal to p. That is, the power 
method did not converge. 
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To circumvent this problem, the power method was used to estimate the spectral 
radius, pl, of the Gauss-Seidel matrix associated with &, and p1 used as an estimate 
to p in (30). The basic program is easily modified to implement this strategy. First, 
the terms EX and EZ (cf. Appendix) are equated to zero (transforming a into CpI), 
and second, the boundary data are set to zero. In (28), the & are all zero and (28) 
reduces to the desired power method to estimate p1 and its eigenvector. After p1 
is estimated, the boundary data, EX and EZ terms are reinitialized and the basic 
iterative (28)-(29) is begun. 

5. A NUMERICAL EXAMPLE 

We have obtained solutions for a number of physical conditions, for various 
values of the parameters of pressure, electric field, temperature, and form of 
the cross section Q, including cases of back diffusion where electrons diffuse 
against the electric field. 

In the present paper we give only one illustrative example, i.e., the case where 
E/N = 10-r’ V cm2, p = 3 Torr, T = 293 K, for a gas of atomic weight 4. Other 
parameters of Eq. (2) involve the usual physical constants, i.e., m = 9.11 x lO-28 g, 
M = 6.68 x lo-““g, and k = 1.38 x lO-23 J/K. The cross section Q(C) was set 
equal to 606 cm2, where E is in eV. 

The solution corresponds to the physical situation of a continuous stream of 
electrons over an infinite plane being subjected to a uniform electric field of strength 
0.99 V/cm and being collected by a metal electrode. The metal electrode absorbs 
electrons and is assumed to impose an effective boundary condition of zero on f”. 
In the immediate vicinity of the boundary there are large gradients in f”. However, 
at a distance sufficiently far from the boundary, f” will be independent of z. The 
distance from the metal boundary at which f” is effectively independent of z was 
determined by several trial solutions. 

The derived distribution functionfO(E, z) illustrated by the solid curve in Fig. 2 
for NZ = 49 and NE = 119 (DZ = 0.0125 cm and DE - 0.005 eV). The 
absorbing metal boundary is at z = 1.2 cm, where f”(e, 1.2) = 0. The curve for 
z = 0.6 cm is the solution forjo, with all gradient terms in z of (2) omitted, imposed 
as a boundary value. A similar solution forfO(E, z) with z ranging from 0 to 1.2 cm 
showed that between I = 0 and 0.6 the derived values off” differ insignificantly 
from the solution with all gradient terms in z omitted. Also shown in Fig. 2 are 
solutions with coarser mesh sizes, i.e., (i) DE = 0.005, DZ = 0.025, and (ii) DE = 
0.01 and DZ = 0.05. It is seen that at low energies numerical results are sensitive to 
the mesh size near the absorbing boundary at 1.2 cm. 

However, this sensitivity to the mesh size is much less severe on the calculated 
values of electron density, shown in Fig. 3. It is this integral over f” which is the 
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FIG. 2. Derived electron distribution function fO(c, z). At z = 1.2 cm an absorbing electrode 
imposes a boundary condition f O = 0. 

more significant physical quantity in most problems. Also shown in Fig. 3 is the 
electron density obtained by the conventional [4, 51 solution of the electron 
continuity equation, i.e., 

r 

&W-DE) = 0, 

where Wand D are taken as independent of z; W is the electron drift velocity and D 
the electron diffusion coefficient evaluated fromjo obtained from (2) where density 
gradients are neglected. It is seen that the usual treatment of diffusion is con- 

I 
1 

Fro. 3. Calculated electron density compared with a classical solution from the continuity 
equation where drift and diffusion coefficients are assumed independent of z. 
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siderably in error from the more complete analysis given in the present paper. 
Thus the spatial gradients terms of (2) are significant, particularly near boundaries 
where density gradients are large. 

In Fig. 4 we illustrate the significant improvement in the rate of convergence of 
the solution off0 by the use of our procedure to select an optimum of w. Using 
w = 1.789, evaluated from this procedure, the solution had effectively converged 
after 270 iterations, the maximum variation of any value off” being <I. For 
w = 1 however, variations in f O at each iteration after 1000 iterations were 2 orders 
of magnitude higher. 

J 
Ia M 

FIG. 4. Behavior of II@+l) - PkJ I( = (&, (P+l’ - P))s)1/2, where d = 5546. 

Further checks on the numerical accuracy of the solution are as follows. 

(1) The derived values of electron density are equal, to within 5 %, with the 
solution derived independently using a different explicit numerical procedure of 
solving (2), which was a relaxation method based upon the time dependence off0 
given in (2). The explicit procedure however, needed larger computation times of 
more than an order of magnitude. 

(2) The derived values of W = 2.58 IO5 cm/set and D = 8.40 l@ cmz/sec for 
z = 0.6 cm are in good agreement with values of W = 2.78 x IO5 cm/set and 
D = 8.77 lo4 cm2/sec derived from the analytic formula obtained from Ref. [5, 
Eqs. (3), (5) and (6)], using the variation of Q with energy of Q = 6Or, but with 
T = 0 K instead of 293 K. 

(3) A consequence of integrating (2) over energy is that electron flux should be 
constant with z. We have evaluated the electron flux from [Ref. 5, Eq. (18)] as a 
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check on our calculations and found that the flux is constant to 3 %, for all values 
of z. 

(4) The iterative logic and the computer program were checked by solving a 
problem involving Laplaces equation for which an exact solution is known. 

6. SUMMARY 

The second-order differential equation defining the electron distribution function 
f”, derived from the Boltzmann transport equation, has variable coefficients and 
also a term in azjo/& az which is not easily handled by standard tiite difference 
schemes. A further complication is the asymmetry of the partial differential 
equation which necessarily fosters a nonsymmetric set of difference equations. 
A somewhat novel finite difference model has been devised which is “almost” 
symmetric and which yields efficient iterative solutions. Signitlcant differences 
are obtained between numerical solutions using the present method and conven- 
tional diffusion methods which ignore the effect of density gradients on the distribu- 
tion function. 

APPENDIX: FINITE DIFFERENCE COUPLINGS 

A(P, P) = (1/4DE2){--A,,(ivE) - A11(S) - A&VW) - AI,( 

+ GWEDZM--AI&W + &(=I - ~412(AW - &(SW)} 

+ (1/4DZ%4,,(=) - 42m - -422ww - A22wm 

+ (1/2DW,(=) + cd=) - c,WW’) - cd~W1 

-W’v El = 4DE” -L {A,,@m + A&m +4& b‘hm - A22(3m 

AU’, NJ = 4DE2 --!-- {-&WE) - A,,WW~ +4& b422@8 + &WV) 

A(P, s) = & {--An(=) - A,,(~)) + 4& 6422(=) + &(=)I 

AU’, W = & V,,(NW) + &WO + 4h I-&WV - A22CWl 
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AU’, SE) = 4DE2 + A,,(=) _ A,,(=3 
4DZ2 2DEDz + EX - EZ A,,(=) 

EX = [c,(NW) + c,(m) + cd?%) + &f-VI/16 DE 

EZ = [c,(m) + c&i@) + cd=) + ~,(~)I/16 DZ 
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